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Abstract

Numerical simulations are carried out for a long slender rigid circular cylinder in a cross-flow to examine three-

dimensional (3-D) wake effects on the flow-induced forces. The aim is to assess the validity and extent of the two-

dimensional (2-D) assumption for both the mean drag and the flow-induced forces. In order to simulate the practical

situation correctly, wall boundary conditions are specified at both ends of the cylinder. The long slender cylinder has

different aspect ratios. A finite volume method (FVM) and a lattice Boltzmann method (LBM) are used to carry out the

computations, and their results are compared with each other and with available experimental and simulation data.

As a first attempt to assess the 2-D assumption, a Reynolds number Re ¼ 100 and an aspect ratio a ¼ 16 are chosen.

At this Re and a, conventional experimental and numerical studies assume that the time-averaged flow is homogeneous

and 2-D over a relatively large portion of the central span. However, present simulations indicate that vortex shedding

from the nominally 2-D cylinder strongly depends on the span location and the flow-induced forces exhibit strong three

dimensionality. The calculated mean drag and root-mean-square lift and drag vary greatly along the span. These results

indicate that the 2-D assumption is not valid for the flow-induced forces, not even within a small region of the central

span, for the aspect ratio examined. The validity and extent of the periodic boundary conditions assumption for a 3-D

simulation of the flow and induced forces on a cylinder in a cross-flow is examined next. It is found that, within the

range of a investigated, an appropriate period could not be found for the numerical simulation. The results further show

that a has a significant effect on the calculated wake flow and the flow-induced forces.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A three-dimensional (3-D) finite cylinder in a cross-flow is one of the most basic and revealing cases in the general

subject of fluid–structure interactions. Structural vibration strongly depends on the magnitude and distribution of the

unsteady flow-induced forces along the span. Numerous experimental investigations have been carried out on this

problem. Important findings and understanding have been achieved on the flow-induced forces, such as their variations

with Reynolds numbers and free stream turbulence (Richter and Naudascher, 1976; So and Savkar, 1981), and their

dependence on the aspect ratio a ¼ L=D of the bluff body (Baban and So, 1991); and on the 3-D nature of the wake

flow, such as oblique and parallel vortex shedding patterns (Williamson, 1989), cellular shedding and associated vortex
e front matter r 2005 Elsevier Ltd. All rights reserved.
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dislocations (Eisenlohr and Eckelmann, 1989; Köng et al., 1990; Williamson, 1992); and different instability modes

(Williamson, 1988, 1996a). Here, L is the span and D is the diameter of the cylinder. A comprehensive review of recent

advances has been given by Williamson (1996b) and Zdravkovich (1997), and the more general bluff body wake has been

reviewed by Roshko (1993) and Matsumoto (1999). These studies generally agree that the cylinder wake is 2-D at

Re ¼ U1D=n ¼ 100 (Zhang and Dalton, 1998), where Re is the Reynolds number, U1 is the free-stream velocity, and n
is the fluid kinematic viscosity. Even in experimental visualization, three dimensionality cannot be identified for Reo150

(Hama, 1957). However, in recent studies (Szepessy and Bearman, 1992), it has been found that end conditions have a

significant influence on vortex formation and their shedding from the bluff body, and on the 3-D nature of the wake flow.

Oblique shedding is one of the more important 3-D features that could influence the amplitude, frequency and phase

of the flow-induced forces. The shedding pattern, either oblique or parallel, strongly depends on the boundary

conditions at both ends of the span (Berger and Wille, 1972). For a circular cylinder with finite a and low Re, vortex

shedding at midspan is influenced by the boundary conditions. Using a flow visualization technique, Slaouti and

Gerrard (1981) examined the end effect on the wake of circular cylinders having a ¼ 25–30. The cylinder was towed

through a water tunnel over a range of Re ¼ 60–200. They reported that both free ends and end plates have severe

effects on the bending of the vortex lines at the cylinder and end plate corner. When the bending of the vortex line is

strong towards both ends, straight and parallel shedding is obtained in the central region. Therefore, they concluded

that slantwise (oblique) shedding might not be an intrinsic feature of the wake of bluff bodies at low Re, but could be

attributed to end flow conditions. Gerich and Eckelmann (1982) examined the vortex shedding frequency along a

circular cylinder with free ends or end plates in a wind tunnel. They divided the cylinder span into two regions according

to the extent of the influence of the end condition on the shedding frequency. In the affected region, the shedding

frequency is significantly influenced by the end condition and the Strouhal number, St ¼ OsD=U1; is about 10–15%
less than that measured in the unaffected region. Here, Os is the vortex shedding frequency.

Stager and Eckelmann (1991) found that the size of the affected region varies with Re, e.g., it is about 10D at

Re ¼ 100 and about 5D at Re ¼ 300–5000. Furthermore, the size is found to decrease with increasing Re. At the

boundary of the affected and unaffected regions, neighboring cells of different shedding frequencies cannot match with

each other, thus, resulting in a modulation of the shedding frequency and a dislocation of the large-scale vortex in the

wake flow. The effect of a on the shedding pattern and on the flow-induced forces at higher Re were carried out by West

and Apelt (1982) at Re ¼ 104–105; by Baban and So (1991) at Re ¼ 4:6� 104 and by Szepessy and Bearman (1992) at

Re ¼ 8� 103–1:5� 105: At lower Re, end effects are more pronounced than that at higher Re, due to the larger size of

the affected region. Norberg (1994) measured the wake flow of circular cylinders with finite a at Re ¼ 50–4� 104;
however, he only focused on St and the suction coefficient at midspan.

Compared to experimental investigations, there were relatively few numerical studies on the 3-D nature of bluff body

wakes and the flow-induced forces. On the other hand, simulations of the corresponding 2-D flow around the long slender

cylinder and the associated flow-induced forces have been amply carried out (Norberg, 2003). Most of the numerical

simulations rely on the continuum model described by the Navier–Stokes equations. The flow field parameters, either in the

form of primitive variables, including flow velocity and pressure, or in the form of stream and vorticity functions, are solved

using various discretization techniques, such as the spectral element method (Karniadakis and Triantafyllou, 1992;

Thompson et al., 1994; Evangelinos and Karniadakis, 1999), the finite element method (Mittal and Balachandar, 1995),

and the finite volume method (Persillon and Braza, 1998). These 2-D and 3-D simulations (Norberg, 2003) provide valuable

time series for the mean and fluctuating forces and for the velocity field in the wake flow. Besides, the simulations also

provide a novel way to understand the physics of wake transition. Details available from these numerical studies have

contributed to a remarkable understanding of the fluid dynamics of 2-D and 3-D cylinder wakes.

Most of the 3-D numerical studies invoked periodic boundary conditions at both ends of the cylinder, thus tacitly

assuming the spanwise variations to have a certain period that is specified a priori. These studies could provide an

approximate model for the midspan wake flow, but fail to take the end effects into account. Only very few calculations

have attempted to consider the effect of end flow on the 3-D wake. Schafer and Turek (1996) gave an overview of

benchmark computations for 2-D and 3-D laminar flow around a cylinder with a ¼ 4: Mittal (2001) used a finite

element method to calculate the 3-D flow past a circular cylinder with end plates and a ¼ 16: However, an assumption

of a plane of symmetry at midspan was invoked. This assumption is made in spite of the large body of data showing

that the wake behind the cylinder is 3-D and varies along the span. Only results at midspan were given and variation

along the span was not reported. Direct numerical simulation (DNS) employing a spectral method was used to calculate

the wake flow and the unsteady forces on a stationary rigid cylinder assuming periodic boundary conditions

(Evangelinos and Karniadakis, 1999). Again, only results at midspan were given and no spanwise variation of the

unsteady forces was reported. In all these calculations, the flow-induced forces were tacitly assumed to be stationary

after the transient period has elapsed. Therefore, these data are inappropriate to use in carrying out an investigation of

3-D wake effects on the behavior of the flow-induced forces, if any.
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Norberg (2003) gave a very detailed compilation of the calculated and measured fluctuating lift data for 2-D and 3-D

cylinders. The collected data covered a Re range of 60–1:39� 106 for experimental investigations and 45–4:4� 104 for

numerical simulations. Most of the 2-D simulations were carried out for Re ¼ 100; while most of the 3-D calculations

were performed at ReX1000: Data collected include blockage, the computational domain specified for the upstream

and downstream region of the cylinder, the numerical methods used to carry out the simulation, a, and C0
L; the root-

mean-square of CL: Here, CL is defined as the unsteady lift force coefficient. The numerical methods used include finite

element, finite volume, finite difference, spectral element, discrete vortex, and lattice Boltzman. These results show that,

for 2-D simulations at Re ¼ 100; the calculated C0
L at midspan lies in the range 0.17–0.52, with most of the values

reported around 0.21–0.24. For 3-D simulations at about the same Re, the calculated C0
L at midspan varies from 0.23 to

0.27 under an assumption of periodic flow over an effective span of 2.25–11. The spanwise variation of C0
L for all these

investigations was not reported. Based on these results, it appears that C0
L varies slightly between the 2-D and 3-D

simulations, irrespective of the assumed effective span between the imposed periodic boundary condition, the numerical

method employed, the aspect ratio of the cylinder, the computational domain specified for the upstream and

downstream region, and the blockage specified. These simulation results are a lot higher than the measurements

reported by Tanida et al. (1973) at 60pRep110 and by Khalak and Williamson (1996) at Re ¼ 200: Therefore, the
reliability of the 3-D calculations at Re ¼ 100 needs further investigation.

In resolving flow-induced vibration problems, it is important to have information on the distribution of the flow-

induced forces along the span of the structure. If the force does not vary along the span, a relatively simple model, such

as a spring–damper–mass model could be used to analyze the structural dynamics and vibration (Zhou et al., 1999; So

et al., 2001). On the other hand, if the force varies along the span, an Euler–Bernoulli or a Timoshenko beam theory

with nonuniform force distribution has to be used instead, because the local fluctuating force influences the vibration

mode and amplitude (Chan and Wang, 1997; Wang et al., 2001). The above review indicates that the wake is most likely

3-D above Re ¼ 100: However, in most numerical treatments of flow-induced vibration problems, a full 3-D treatment

of the structural dynamics using flow data derived from a full 3-D wake flow has not been reported. Even the DNS

simulations (Evangelinos and Karniadakis, 1999) were carried out assuming periodic boundary conditions; hence, they

did not represent a full 3-D treatment of the flow and structural dynamics simultaneously. In view of this, before

attempting to calculate flow-induced vibration problems involving long slender structures, the fundamental wake flow

and the distribution of the flow-induced forces along the span of a 3-D stationary rigid slender cylinder have to be

resolved. The present paper attempts to answer some of these questions and provide numerical data on the spanwise

variation of the flow-induced forces on the cylinder.

A common approach in past treatments of this fairly fundamental bluff body flow problem is to assume the time-

averaged flow to be homogeneous along the span, at least within a finite central span region, for a long slender structure

where a is relatively large. The flow across the central region is taken to be 2-D in the mean sense and is independent of

the actual span of the cylinder (Norberg, 2003). In the present approach, focus is placed on the wake behind a structure

having a relatively large a, and on the variation of the spanwise flow-induced forces. In order not to invoke periodic

boundary conditions, a 3-D circular cylinder with end walls in a cross-flow with a ¼ 16 and Re ¼ 100 is numerically

studied in detail. Also, calculations at the same Re but different a are carried out. At this Re and the range of a

investigated, the wake flow might not be 2-D. Therefore, the first objective of the present approach is to allow the wake

to evolve, be it 2-D or 3-D. It is hoped that, through this investigation, the effect of a 3-D wake on the distribution of

the flow-induced forces along the cylinder span, if any, could be assessed. The second objective is to use the numerical

results to attempt a resolution of the inconsistency shown in the measured and calculated data for 2-D and 3-D

cylinders at Re ¼ 100 (Norberg, 2003). Finally, the third objective is to assess, if possible, the validity and extent of

the periodic boundary conditions assumption on a 3-D simulation of the flow and induced-forces on a cylinder in a

cross-flow.
2. Numerical methods

2.1. Problem description

A schematic view of the problem is illustrated in Fig. 1(a). The rigid circular cylinder with aspect ratio a is bounded

by two parallel end walls and is exposed to a cross-flow. Incompressible flow with constant fluid density r and constant

dynamic viscosity m is assumed. A Cartesian coordinate system ðx; y; zÞ; where the x-axis is aligned with the incoming

flow direction (streamwise direction), the y-axis is perpendicular to the plane containing the streamwise and spanwise

direction (z-axis), is used to describe the flow. The z-axis is chosen to coincide with the cylinder axis; hence, the origin of
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Fig. 1. (a) A schematic view of the problem; (b) uniform lattice and curved boundary; (�; boundary node; D fluid node; �; solid node);
(c) layout of coarse, fine lattices and their interface.
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the coordinate system is located on this axis. These are dimensional physical coordinates. Two rectangular end walls are

placed at the cylinder ends; therefore, the z-axis is bounded by the span of the cylinder, while the y-axis extends to

infinity on both sides of the central plane. However, for computational convenience, the y extent is chosen to be at a

distance where the flow is essentially parallel to the x–z plane and the velocity is the same as the incoming free-stream

velocity U1:All physical parameters are normalized by D; r; m and U1: The normalized flow-induced force coefficient
acting on the cylinder axis is decomposed into a drag coefficient CD ð0; 0;Z; tÞ and a lift coefficient CL ð0; 0;Z; tÞ; where
the nondimensional time is defined as t ¼ ~tU1=D; and the nondimensional coordinates are denoted by X ¼ x=D; Y ¼

y=D and Z ¼ z=D: Here, the tilde ð�Þ is used to denote the dimensional counterpart of p; u and t. From this point on,

the drag and lift coefficients, CD ðZ; tÞ and CL ðZ; tÞ; can be written as

ðCDðZ; tÞ;CLðZ; tÞÞ ¼
2

D

I
�pnþ

1

Re
ðruþ ruTÞ . n

� �
ds, (1)

where p ¼ ~p=rU2
1 and u ¼ ~u=U1 are the dimensionless static pressure and velocity vector, respectively, n the outward

unit normal vector, and ds the tangential element of the slice at Z.

Two numerical techniques, a lattice Boltzmann method (LBM) and a finite volume method (FVM), are used to solve

the governing incompressible Navier–Stokes equations numerically, and a comparison is made of the calculated results.

The comparison allows a deeper understanding of the effects of numerical techniques, if any, to be gained on the wake
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flow, and on the structural responses and their spectral behavior. In the following, the incompressible LBM is described

first and this is followed by a brief discussion of the FVM.

2.2. Lattice Boltzmann method

The Boltzmann equation describes the dynamics of nonequilibrium processes and their relaxation to thermodynamic

equilibrium. It specifies the behavior of many-particle kinetic systems in terms of the basic mechanical laws governing

single-particle motions at the atomic or molecular scale (Cercignani, 1988). The Boltzmann equation is formulated

based on the one-body distribution function f ðx; e; ~tÞ; which is the density of molecules at position x and speed e at time
~t; and can be written in its dimensional form as

qf

q~t
þ e  =f ¼ Gðf ; f Þ, (2)

where the terms on the left-hand side of Eq. (2) describe the free streaming of molecules in space, and the term Gðf ; f Þ
on the right-hand side of Eq. (2) represents a complicated integral operator in the velocity field expressing

intermolecular interactions or collisions. Once f is known, macroscopic properties such as r; ~u; and p can be obtained by

integration over the molecular velocity field. The particle velocity field e can be discretized using a small set of vectors

feig such that the macroscopic conservation laws are satisfied (He and Luo, 1997a). With an assumed model for the

integral collision operator G, the discretized form of Eq. (2) is called the lattice Boltzmann equation (LBE) and can be

solved numerically.

The incompressible Navier–Stokes equations can be derived from the LBE through the Chapman–Enskog procedure

if the density fluctuation is assumed to be negligible. However, the assumption is not always satisfied in numerical

simulations using LBE. Therefore, compressibility effects in the numerical solution of the LBE might give rise to serious

errors. Numerous researchers have attempted to minimize the Mach number (M) effect in the numerical solution of the

LBE. Initial attempts to recover the incompressible Navier–Stokes equations were made by McNamara and Zanetti

(1988) and Chen et al. (1992). More recently, He and Luo (1997b) offered an alternative to eliminate terms of order M2

due to the density fluctuation in the existing LBM and have shown that their incompressible LBE model is also capable

of recovering the incompressible Navier–Stokes equations. Since then, numerous models have been proposed for the

numerical solution of the existing LBM so that the incompressible Navier–Stokes equations are recovered correctly.

Among the various models put forward, the present attempt is based on that proposed by Guo et al. (2000). In the

following, a brief outline of this model is described.

In order to facilitate numerical and analytical solutions of Eq. (2), the complicated nonlinear integral

collision operator Gðf ; f Þ is often replaced by simpler expressions to avoid mathematical difficulties (Qian et al.,

1992). For example, Eq. (2) can be simplified by a BGK (Bhatnagar-Gross-Krook, 1954) collision operator and can be

expressed as

qf

q~t
þ e.=f ¼ �

f � f eq

l
, (3)

where l is the relaxation time due to particle collision, and f eq is the equilibrium Boltzmann–Maxwell distribution

function. It can be shown that Eq. (3) can be discretized along each velocity direction ei at each lattice as

f i xþ eid~t; ~t þ d~tð Þ � f i x; ~tð Þ ¼ �
1

t
f iðx; ~tÞ � f

eq
i ðx; ~tÞ

� �
, (4)

where f iðx; ~tÞ is the density distribution function along velocity ei at the lattice position x and time ~t; t ¼ l=d~t is

the relaxation parameter, and d~t is the time step. Hereafter, this model is designated as the lattice BGK model.

The Navier–Stokes equations for incompressible gas flow can be shown to be recovered correctly by the LBM

(Guo et al., 2000).

2.2.1. Solution of the lattice BGK model

The lattice BGK model can be solved as follows. In BGK formulation, the single-time relaxation equation (4) for the

evolution of f a; the distribution function for the velocity direction a; can be written as

f aðxi þ eaD~t; ~t þ D~tÞ � f aðxi; ~tÞ ¼ �
1

t
f aðxi; ~tÞ � f eqa ðxi; ~tÞ
� �

. (5)

This equation can be solved assuming a velocity model, which for 3-D flows could be represented by

a 15-velocity (or 15-bit) lattice Boltzmann Equation (LBE) model, denoted here as D3Q15: The velocity set for
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D3Q15 is defined as

e ¼

ð0; 0; 0Þ a ¼ 0; rest particle;

ð�1; 0; 0Þc; ð0;�1; 0Þc; ð0; 0;�1Þc a ¼ 1; 2; . . . ; 6; group I;

ð�1;�1;�1Þc a ¼ 7; 8; . . . ; 14; group II;

8><
>: (6a2c)

where c is the lattice velocity. The solution of Eq. (5) can be achieved in two computational steps, namely,

(i) collision step:

~f
a
xi; ~tð Þ ¼ f a xi; ~tð Þ �

1

t
f a xi; ~tð Þ � f eqa xi; ~tð Þ
� �

, (7)

(ii) streaming step:

f a xi þ eaD~t; ~t þ D~tð Þ ¼ ~f
a
xi; ~tð Þ, (8)

where f aðx; ~tÞ is the particle velocity distribution function along the ath direction at position x and time ~t; f eqa ðx; ~tÞ is the
equilibrium distribution function, which for the incompressible model is defined as

f eqa ¼

�4s
p

c2
þ s0ðuÞ a ¼ 0;

l
p

c2
þ saðuÞ a belongs to group I;

g
p

c2
þ saðuÞ a belongs to group II;

8>>>>><
>>>>>:

(9a2c)

where

saðuÞ ¼ wa 3
ðea � uÞ

c2
þ 4:5

ðea � uÞ
2

c4
� 1:5

juj2

c2

� 
, (10)

s; l and g are model-dependent parameters. For D3Q15; these three parameters satisfy

6lþ 8g ¼ s, (11a)

lþ 4g ¼
1

2
, (11b)

The weight coefficient wa is

wa ¼

2=9 a ¼ 0;

1=9 a ¼ 1; 2; . . . ; 6;

1=72 a ¼ 7; 8; . . . ; 14;

8><
>: (12a2c)

and the macroscopic variables are

p ¼
c2

4s

X
aa0

f þ s0ðuÞ

" #
, (13)

u ¼
X

ceaf a, (14)

n ¼ ð2t� 1ÞDxc=6, (15)

where Dx is the lattice length.

2.2.2. Boundary conditions

Unlike traditional computational fluid dynamics methods, the basic evolution variable in LBM is the particle

distribution function f ; which is usually not specified at the boundaries. Therefore, when the macroscopic

variable distributions at the boundary are known, it is important to find an appropriate particle distribution

such that it can meet the specified boundary condition. The nonequilibrium extrapolation treatment proposed by Guo

et al. (2000) is based on the decomposition of the distribution function and still gives second-order accuracy, without

having to make additional assumptions. The function f aðx; ~tÞ can be decomposed into an equilibrium and a
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nonequilibrium part, such that

f aðx; ~tÞ ¼ f eqa ðx; ~tÞ þ f nea ðx; ~tÞ, (16)

and ~f aðxb; ~tÞ at the boundary node x ¼ xb is rewritten as

~f aðxb; ~tÞ ¼ 1�
1

t

� �
f nea ðxb; ~tÞ þ f eqa ðxb; ~tÞ. (17)

For the boundary node, f eqa ðxb; ~tÞ is not known. On the other hand, the pressure is known when the pressure

boundary condition is specified. Therefore, in Eq. (9), p can be taken to be the boundary pressure pb and the velocity ~u
can adopt the value at the neighboring interior fluid node ~uf : The pressure boundary condition can be similarly

determined if the velocity at the boundary is specified. In the present problem, the velocity at the surface is known

but not the pressure. Once the pressure on the surface is determined, the force acting on the cylinder can be calculated

(Mei et al., 2002).

LBM often uses uniform regular Cartesian lattices; however, for a curved boundary, such as that encountered on a

sphere and/or a cylinder, it needs special treatment (Mei et al., 2002). The curved boundary can be treated as a kind of

velocity boundary condition (see Fig. 1(b)). The velocity of the object is usually known; if it is stationary, ~ub equals zero.

If the velocity at xb; xf and xff is known, then ~uw can be determined from the following extrapolations:

~uw ¼ ½~ub þ ðd� 1Þ~uf �=d if do0:75, (18a)

~uw ¼ ~ub þ ðd� 1Þ~uf þ ð1� dÞ 2~ub þ ðd� 1Þ~uff

� �
=ð1þ dÞ if dX0:75. (18b)

This kind of boundary treatment also has second-order accuracy.

2.2.3. Multi-block decomposition and local mesh refinement

For external flows, the computational domain must be large enough to allow a correct determination of the wake

flow. Since the velocity gradient is very high inside the boundary layer, spatial resolution has to be high in this region.

Therefore, the computational domain should be decomposed into a coarse and a fine mesh region. On the coarse-fine

mesh interface, the macroscopic variables and their derivatives must be continuous. Fig. 1(c) shows the layout of the

coarse and fine mesh and their interface.

From Eq. (15), if n is continuous across the fine and coarse grid, the following is obtained

tf ¼ 1
2
þ mðtc � 1

2
Þ, (19)

where m ¼ Dx;c=Dx;f is the coarse-to-fine lattice ratio, and superscripts c and f denote coarse and fine grid separately

(Yu et al., 2002). Decomposing f ðx; ~tÞ into an equilibrium and a nonequilibrium part, and maintaining continuity in the

deviatoric stresses, relations between f c
ðx; ~tÞ and f f

ðx; ~tÞ can be deduced and they are given by

~f
c

a ¼ f eq;fa þ
tc � 1

tf � 1
~f
f

a � f eq;fa

� �
,

~f
f

a ¼ f eq;ca þ
tf � 1

mðtc � 1Þ
~f
c

a � f eq;ca

� �
. ð20Þ

The force value can be calculated by the momentum exchange method. A nice feature of LBM is that the momentum

flux tensor is available locally from its very definition. The momentum flux F across the plane is defined as

F ¼ ð ~f aðxw; ~t � 1Þ þ ~f āðxf ; ~tÞÞeac, (21)

where ā is the reverse direction of a:

2.3. Finite volume method

The governing equation is the 3-D unsteady incompressible Navier–Stokes equations. Written in the general

convective–diffusive form, these equations in nondimensional form are

qrC
qt

þ =  ðruC� GCrCÞ ¼ S̄
C
, (22)

where C ¼ ð0; u; v;wÞT is the transport quantities, u ¼ ðu; v;wÞ is the convective velocity vector, GC ¼

ð0; 1=Re; 1=Re; 1=ReÞT is the diffusive coefficient, and S̄
C
¼ ð0;�qp=qX ;�qp=qY ;�qp=qZÞ

T is the source term. From

this point on, only dimensionless variables are used in the equations, and the initial and boundary conditions.
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The initial and boundary conditions for the flow can be summarized as
(i)
 at t ¼ 0; the initial condition is specified as a sudden start condition,

u ¼ 1; v ¼ w ¼ 0; p ¼ 0, (23a)
(ii)
 at the inlet, constant mainstream velocities with neglected boundary layer and secondary flow are specified,

u ¼ 1; v ¼ w ¼ 0, (23b)
(iii)
 at the outlet, a Neumann-type boundary condition is assumed,

qu
qn

¼ 0, (23c)
(vi)
 at cylinder surface and ends, a no-slip condition is specified,

u ¼ 0, (23d)
(v)
 at the transverse ends, a symmetric boundary condition is invoked,

qu

qn
¼

qw

qn
¼ v ¼ 0, (23e)
(vi)
 the pressure is solved using a pressure-based algorithm, while at all boundaries, the Neumann-type boundary

condition is invoked for pressure and its correction p0;

qp

qn
¼ 0;

qp0

qn
¼ 0. (23f)
2.3.1. Discretization of the governing equations

A finite volume method on an unstructured mesh is used to solve Eqs. (22) and (23). A collocated mesh strategy is

utilized, in which all flow variables are stored at the control volume center, or the control surface center if it lies on the

boundary. Integration of Eq. (22) about an arbitrary mesh P of control volume DV and control surface Af at time level

n þ 1 yields the following semidiscretized equation,

rDV

Dt
1:5Cnþ1 � 2:0Cn þ 0:5Cn�1
� �

þ
X

f

ðruC� GCrCÞ A
� �nþ1

f
¼ S̄

C
DV , (24)

where Dt is the time step, superscripts n þ 1; n; n � 1 denote the next, present and previous time levels. The time

derivative is discretized by a second-order backward implicit differencing scheme. To obtain the fully discretized form, a

second-order upwind differencing scheme, a flow limiter for the convective term, and a second-order central differencing

scheme for the diffusive term at both the interior and boundary surface Af and pressure gradient in the source term in

Eq. (24) are adopted. Recasting Eq. (24) into a standard form of finite volume formulation, the following algebraic

equations relating the transport quantities C at cell P with its neighboring cell nb at time level n þ 1 are obtained:

AC
PCP ¼

X
AC

nbCnb þ SC
T , (25a)

AC
P ¼

X
AC

nb þ 1:5
rDV

Dt
, (25b)

SC
T ¼ SC

P � 2:0
rDV

Dt
Cn þ 0:5

rDV

Dt
Cn�1, (25c)

where Anb is the influence coefficient of neighboring cell nc on cell P, and SC
P is the sum of the discretized form of the

source term, the higher-order convective term and the nonorthogonal diffusive term.

The velocity u�P satisfying Eq. (25) generally does not satisfy the continuity equation. A SIMPLER algorithm is

applied to update the velocity u�P and the pressure pP: The pressure correction equation for p0
P is

A
p0

P p0P ¼
X

A
p0

nbp0nb �
X

m�
f , (26a)
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A
p0

P ¼
X

A
p0

nb, (26b)

A
p0

nb ¼
rDV

Au
P

� �
f

A2
f

sV
, (26c)

m�
f ¼ rAf  ū

�
f �

rDV

Au
P

� �
f

Af  ðrp�Þf �
rDV

Au
P

rp�
� �

f

 Af

" #
, (26d)

where Au
P is the diagonal coefficient of Eq. (24) and m�

f is the mass flux across the control surface Af between cell P and

cell nb. The idea of Rhie and Chow (1983) is used in the calculation of m�
f to prevent the well-known checker-board

problem in the velocity and pressure fields. The velocity u�P and the mass flux m�
f is updated using the pressure correction

Eq. (26) and are given by

unþ1
P ¼ u�P �

DV

Au
P

rp0P, (27a)

mnþ1
f ¼ m�

f �
rDV

Au
P

� �
f

Af  ð=p0Þf . (27b)

In the SIMPLER algorithm, the pressure equation is the same as the pressure correction equation except m�
f : The

equations can be written as

A
p0

P pP ¼
X

A
p0

nbpnb �
X

m��
f , (28a)

m��
f ¼ rAf 

P
Au

nbu
�
nb þ Su

T

Au
P

� �
f

�
rDV

Au
P

� �
f

Af  ð=p�Þf �
rDV

Au
P

=p�
� �

f

 Af

" #
. (28b)

2.3.2. Numerical solution procedure

The procedure for determining pressure and velocity at each time step can be summarized as follows:
(i)
 solve Eq. (25) for the intermediate velocity u�P;

(ii)
 solve Eq. (26) and update the velocity u�P and m�

f using Eq. (27) so that unþ1
P and mnþ1

f satisfy both the continuity

equation and the momentum equations;
(iii)
 solve Eq. (28) for the pressure pnþ1;

(iv)
 repeat steps (i)–(iii) at time level n þ 1 until the sum of the absolute mass flow residual in all meshes decreases to

0.001 of the total mass flow rate across the inlet boundary, then march into the next time level.
3. Data analysis

The numerical methods allow the wake flow and the flow-induced forces to be calculated in detail. This includes the

nature of the flow-induced forces, such as their stationary character or lack thereof. From all available data on the wake

flow, it is most unlikely that the velocity field in the wake will become nonstationary. However, there is insufficient

evidence to indicate one way or the other the stationary nature of the flow-induced forces if they are affected by the 3-D

nature of the wake behind the cylinder. The forces could become 3-D and could take a long time to approach a

stationary state. If the forces are indeed stationary, conventional methods such as FFT can be used to analyze the force

signals, and the statistics can be calculated straightforwardly. On the other hand, if the force signals are nonstationary,

a different method, such as wavelet analysis (Farge, 1992; Torrence and Combo, 1998), will have to be used to analyze

the signals.

Wavelet analysis is an effective tool for analyzing localized variations of power within a time series and can be used to

analyze time series that contain nonstationary power at many different frequencies (Daubechies, 1990). By

decomposing a time series into time–frequency space, it is possible to determine both the dominant modes of

variability and how those modes vary in time. Therefore, wavelet analysis can help to determine whether the time series

reaches a stationary state or not. Wavelet analysis involves specifying a wavelet transform (WT),

WTðs; t̄Þ ¼
1ffiffi
s

p

Z 1

�1

wðtÞc� t � t̄
s

� �
dt, (29)
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where wðtÞ is the data to be analyzed, c�
ðtÞ is called the mother wavelet, s is the scaling factor, and t̄ is the translating

factor. In the present analysis, the continuous wavelet transform (CWT) with the Morlet wavelet as the mother wavelet

is used (Farge, 1992). The algorithm provided by Torrence and Combo (1998) is invoked to implement the CWT.

In the wavelet analysis, the temporal scaling factor s is used instead of the frequency commonly adopted in the

conventional Fourier analysis. In order to interpret the results of the wavelet analysis in the conventional way, the

scaling factor needs to be converted into the equivalent Fourier frequency. The basic idea of conversion is to substitute

a single-frequency wave of a known frequency into the wavelet transform and find the temporal scaling factor at which

the wavelet spectrum takes its maximum value. Repeating this procedure for a series of frequencies, the relation

between the temporal scaling factor and the equivalent Fourier frequency can be established. For the Morlet wavelet,

the relation is given in Torrence and Combo (1998) as Oeq ¼ 1=1:03s; where Oeq is the equivalent Fourier frequency.

This Oeq is then equivalent to the frequency O: The vortex shedding Oeq thus deduced can be used to define an

equivalent Steq; and it is the same as St defined using Os; i.e., Steq ¼ St:
In order to facilitate easy understanding and comparison with FFT calculations, the results of the wavelet analysis

are presented in the form of time–frequency spectra (contour maps). Slices at selected instantaneous time are then given

to demonstrate the temporal variation of the spectrum. The wavelet spectra in all these figures are dimensionless but not

normalized. There is no need to normalize the spectra because only a comparison at different locations is necessary for

an understanding of the spanwise variation of the forces.
4. Numerical results and discussion

Before embarking on a discussion of the simulation results, it is necessary to establish that the solutions obtained

from the FVM and the LBM are convergent and are essentially grid independent. Common to both methods are the

inlet condition and the upstream distance. For the present calculations, the inlet is chosen at X ¼ �10 and an

impulsively started initial condition is applied. The same initial condition is imposed on the FVM and LBM. However,

the computational domain for the two methods is slightly different.

For the LBM the domain is chosen to be 50� 16� 16: In order to resolve the flow around the cylinder more

accurately, a refined grid with a domain size given by 7� 4� 16 is placed around the cylinder with the upstream

boundary located at X ¼ �1:5: The coarse grid is defined by Dx;c ¼ D=8 and the fine grid is defined in the present

calculations as Dx;f ¼ D=N; where N is any multiple of 8. Two different fine grids have been examined: one given by

N ¼ 24 and another by N ¼ 32; i.e., m ¼ 3 and 4, respectively. With these grids, there are 48 and 64 lattices around the

cylinder, respectively. The calculated mean drag coefficient C̄D and the root-mean-square lift coefficient C0
L deduced

from the calculations at the same t using these two different grids do not differ by more than 1%. In view of this, the

following calculations using the LBM are carried out with m ¼ 3:
For the FVM, the computational domain is 35� 16� 16: Two different mesh sizes and distributions were investigated

in the FVM calculations. One has 160 nodes around the cylinder circumference with 64 layers along the cylinder span,

while another has 200 nodes and 80 layers. The calculated C̄D and C0
L are deduced from these two sets of simulations. It

is found that the difference between these calculated values is less than 1.2% of each other at the same t. Therefore, these

solutions can be considered to be convergent and grid independent for both the FVM and LBM simulations.

The objective of the present study is to investigate the effect of a 3-D wake flow on the flow-induced forces along the

span of a long slender cylinder. A secondary objective is to further investigate the consistency of the calculated C0
L for 3-

D cylinders in a cross flow at Re ¼ 100: In order to achieve these objectives, it is necessary to first demonstrate that the
present numerical methods could replicate the 2-D results reported in Norberg (2003) and that the wake behind the long

slender cylinder at Re ¼ 100 is indeed 3-D. Once the reliability of the numerical methods is established, the results of

either the LBM or the FVM could be used to analyze the effects of the 3-D wake on the flow-induced forces. In the

following discussion, results of the calculated 2-D case are presented first. This is followed by an examination of the

wake flow and the characteristics of the flow-induced forces. Once the character of the forces has been established, a

proper technique could be used to analyze the forces distribution along the span and to determine their spectral

contents and spanwise correlations. Finally, an attempt is made to evaluate the effect of a on the calculated flow-

induced forces and wake flow, including their 3-D behavior or lack thereof.

4.1. 2-D calculations

The 2-D calculations were carried out around a circle, i.e., assuming the cylinder span to be infinite and the flow to be

homogeneous along the cylinder axis. Only the calculated C̄D; C0
D and C0

L are reported in Table 1 together with 2-D
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Table 1

Comparison of calculated and measured C̄D; C0
D and C0

L at Re ¼ 100

Re Calculation/measurements L=D C̄D C0
D C0

L

Schlichting (1955) 100 � 1:70
Norberg (2003) 100 0.14–0.35

He and Doolen (1997) 50–150 2D calculations 0.23

Present FVM 100 1.78 0.0079 0.327

Present LBM 1.27 0.003 0.24

Norberg (1994) 100 16 0.11–0.52

Zhang and Dalton (1998) 100 11 1.32a 0.23a

Zhang and Dalton (1998) 200 15 0.43a

Persillon and Braza (1998) 100 3-D calculations 1 1.24a

Mittal (2001) 100 16 1.34b 0.033b

Present FVM 100 16 1.56b 0.0012 0.035b

Present LBM 16 1.31b 0.0013 0.043b

Present FVM 16 1.60c 0.0016 0.074c

PresentLBM 16 1.34c 0.0048 0.074c

Tanida et al. (1973) 60–110 10 0.03–0.09d

Tanida et al. (1973) 100 10 1.26

Tritton (1959) 105 3-Dmeasurements 187.5 1.25

Khalak and Williamson (1996) 200–1300 10 0.03–0.30d

Jordan and Fromm (1972) 100 1.29

Roshko (1954) 100 1.29

aWith periodic boundary condition at cylinder ends.
bValue at mid-plane and with end walls.
cSpanwise average over whole span.
dSpanwise average over active span.
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data collected from Schlichting (1955), He and Doolen (1997), and Norberg (2003). For both FVM and LBM, the

calculated values of St are 0.166 and 0.161, respectively, and C̄L is essentially zero; the numerical calculation error in C̄L

amounts to four orders of magnitude less than C̄D: The corresponding St reported by Norberg (2003) is 0.16–0.17, thus
the present calculated St falls within this range. It can be seen that both LBM and FVM give a consistent prediction of

St and the calculated C0
L compares well with those reported in the literature. The predictions of FVM tend to be on the

high side; however, they are still within the range of reported results for a 2-D cylinder. The difference between the

FVM and LBM calculated C̄D and C0
L are 39% and 36%, respectively. However, the FVM calculated C̄D is only in line

with previous experimental data at Re ¼ 100 (Schlichting, 1955), but not so with more recent measurements (Table 1).

On the other hand, the FVM and LBM calculated C0
L are consistent with the data collected byNorberg (2003) and with

that obtained by He and Doolen (1997) using a LBM technique.

The near-wake velocity vector and vorticity component oz plots are given in Figs. 2(a) and 3(a), respectively. The

plots are derived from FVM calculations and are taken at a dimensionless time t ¼ ~tD=U1 ¼ 800; where the lift signal
shows stationary behavior. Similar plots can be obtained from the LBM results. The velocity vector plot in the near

wake ð�2oXo5Þ substantiates the oz distribution, which is given in the range �5oXo22: Clearly, alternating vortex
shedding with a 2S pattern is replicated. These results are consistent with those reported in the literature. Therefore,

both LBM and FVM results are reliable to within the range reported by other investigators and the mesh size and mesh

density are acceptable.
4.2. 3-D wake characteristics

It has been known that vortex shedding from nominally 2-D bluff body exhibits certain 3-D characteristics. The

simple way to identify these 3-D characteristics is through numerical flow visualization. This can be accomplished by

visualizing the velocity vector and oz plots in the near wake of a long slender cylinder in a cross flow. The velocity

vector plots at three different Z locations (Z ¼ 0 and �4) are shown in Figs. 2(b)–(d), while the corresponding oz plots
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Fig. 2. Near-wake velocity distribution for flow around 2-D and 3-D cylinder at stationary state: (a) 2-D case; (b) Z ¼ 4 of 3-D case;

(c) Z ¼ 0 of 3-D case; (d) Z ¼ �4 of 3-D case.
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are given in Figs. 3(b)–(d). The range shown for the velocity vector plots is �2oXo5 and the corresponding range for

oz is �5oXo22: The velocity vector plots are used to substantiate the interpreted 3-D behavior of the oz distributions.

The contour plot of oz in the X–Z plane at Y ¼ 0 is displayed in Fig. 4.

It is clear from the velocity vector plots that the near wake velocity distribution at Z ¼ 0 for the long slender cylinder

(Fig. 2(c)) is different from that shown for the 2-D case (Fig. 2(a)). Two elongated vortices shed at about the same time

are discernible in Fig. 2(c) while alternating shedding is indicated in Fig. 2(a). This observation is consistent with the oz

plots shown in Fig. 3. The velocity vector plot of Fig. 2(a) suggests that, in the near-wake region ð�2oXo5Þ; the vortex
shedding pattern is such that, in one cycle, two vortices are released, one from the bottom and another from the top.

In other words, a 2S shedding pattern is established (see Fig. 3(a)). The same is not true for the long slender cylinder

(Fig. 3(c)). However, this behavior changes back to alternate shedding away from the Z ¼ 0 plane, as can be seen from

the velocity vector plots shown in Figs. 2(b) and (d). For example, the vortices are shed alternately at Z ¼ �4 but they

have different phase; at Z ¼ 4; the large vortex is shed from the bottom side (Fig. 2(b)), while the reverse is true at

Z ¼ �4 (Fig. 2(d)). More about this antiphase behavior can be inferred from the oz plots (Fig. 3). This phase variation

is evidence of the lack of similarity in the near wake velocity vector plot along the span and lends credence to the

interpretation that the wake flow is indeed 3-D. This finding is consistent with the work of Roshko (1954) who showed

that vortices shed from a circular cylinder in the Re range 50–150 are not necessarily 2-D, but that a periodic phase

variation may exist parallel to the cylinder axis.

Fig. 3 shows the oz distribution for the 2-D case and in different Z-planes for the long slender cylinder. For the 2-D

case, a 2S type vortex shedding is observed (Fig. 3(a)). In the Z ¼ 0 plane of the long slender cylinder, a 2P type vortex

shedding is displayed (Fig. 3(c)). This 2P type vortex shedding is similar to the one identified by Williamson and Roshko

(1988) for a cylinder under forced oscillation. In the present case, the formation of the 2P type vortex shedding at the

Z ¼ 0 plane could be due to oblique shedding, which gives rise to an antiphase vortex shedding along the span

(see Section 4.5 for more details of the antiphase behavior of the CL contours behind the cylinder). The pairing occurs

downstream at about X ¼ 7 and is not visible in the velocity vector plots. At Z ¼ �4; the vortex shedding pattern is

such that in one cycle two vortices are released, one from the bottom and another from the top. However, the two shed

vortices quickly organize themselves into single vortices like those shown for the 2-D case (Figs. 3(b) and (d)). This

shedding behavior resembles the 2S type. Unlike the 2-D case, the shedding along the span is antiphase though. For

example, at Z ¼ 4; the large vortex is shed from the top (Fig. 3(b)), while the reverse is true at Z ¼ �4 (Fig. 3(d)), hence
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Fig. 3. Near-wake vorticity component oz distribution for flow around 2-D and 3-D cylinder at stationary state: (a) 2-D case;

(b) Z ¼ 4 of 3-D case; (c) Z ¼ 0 of 3-D case; (d) Z ¼ �4 of 3-D case.
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the vortex shedding is antiphase. In general, the vortex shed is quite strong immediately behind the cylinder at Z ¼ �4;
but the vortex is split into two smaller vortices further downstream (Figs. 3(b) and (d)). These oz distributions are quite

different from those shown in Fig. 3(a) and further substantiate the 3-D character of the wake flow.

Other key 3-D features of the wake of a nominally 2-D body are oblique shedding and vortex dislocation. The oz

distributions at t ¼ 600 and 900 in the X–Z plane at Y ¼ 0 are shown in Fig. 4. The behavior of the lift signal is

different at these two different times. As can be seen from Fig. 6, the lift signal appears to be in a quasistationary/

transitional state at t ¼ 600 and in a stationary state at t ¼ 900: It can be seen that parallel vortex shedding is dominant
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along the span at t ¼ 600; while oblique vortex shedding along the span is distinctly visible at t ¼ 900: At this time,
vortex shedding seems antisymmetric about the Z ¼ 0 plane, thus indicating that out-of-phase vortex shedding could be

a consequence of the oblique shedding or vice versa. Also, the oblique shedding angle appears to be almost constant

along the entire span.

Irrespective of whether the vortex shedding is parallel or oblique, there is only one vortex cell within the spanwise

region for both plots shown in Fig. 4, thus suggesting that the shedding frequency Os is the same along the entire span.

Indeed, the FVM and LBM calculated values of St are constant along the span and they are 0.142 and 0.145,

respectively, (Fig. 5). These values of St agree fairly well with 0.145 calculated by Mittal (2001) and 0.140 measured by

Norberg (1994). The St value obtained is not a good indication of whether the vortex shedding and/or the wake flow is

3-D in nature. At this point, it is appropriate to point out that, in the past, most calculations were seldom carried out to

t ¼ 900 and beyond. As a result, they failed to observe the oblique vortex shedding reported in the present calculation.

This could be one of the reasons why the conclusion was drawn that the wake flow was approximately 2-D because

vortex shedding behavior was essentially the same along the cylinder span. However, the oblique shedding, plus other

results presented above, show that the wake flow behind a nominally 2-D cylinder, in this case a long slender cylinder, is

essentially 3-D and there is no symmetry about the Z ¼ 0 plane. In view of this, the presently investigated long slender

cylinder case is labeled the 3-D case in contrast to the 2-D case.
4.3. Unsteady flow-induced forces

For most 3-D calculations, periodic boundary conditions are invoked at both ends of the cylinder. The period

assumed is usually not more than several p (Evangelinos and Karniadakis, 1999). Due to the large storage requirements
for 3-D calculations, it is the normal practice to terminate the calculation after the CL time series reaches a ‘‘stationary

state’’. The stationary behavior of the CD time series is seldom checked. In fact, it is tacitly assumed that, once the CL

time series becomes stationary, the CD time series will also be stationary. Subsequently, calculations were carried out to

around t ¼ 300 where the CL time series has achieved a stationary state. This assumption may not be valid because

cross-talk between the X and Y directions could affect the behavior of the CL and CD time series. It is also misleading

because most calculations have not been carried out far enough in time to show that the stationary state achieved is

truly stationary for both the CL and CD time series.

A cylinder with two end-walls in a cross-flow is simulated in the present study. The simulation covers the entire span

of the cylinder and the calculation is carried out to a very large value of t. In the process of performing the calculations,

it has been found that the time series cannot reach a ‘‘stationary state’’ until it is great enough to capture the

phase transition (see Section 4.5). The time required is different for the FVM and the LBM, and even after a ‘‘stationary

state’’ has been reached for the CL time series, there is no guarantee that similar behavior can be established for

the CD time series at the same value of t. In view of the fact that the CD time series takes a long time to settle down

and may or may not become ‘‘stationary’’, the calculations were carried out to t ¼ 600 for the LBM and to t ¼ 900

for the FVM.

The time series plots of CL and CD at Z ¼ 0 derived from FVM and LBM calculations are shown in Figs. 6 and 7,

respectively. For the FVM calculation, the CL time series displays a constant amplitude behavior when t4200; and this
behavior extends to about t � 500: This t range more than covers the normal period reported in the literature. As the

calculation continues, the amplitude of the CL time series begins to decrease at t � 600; and after a transition period it

reaches a new ‘‘stationary state’’ at t � 700; and this new ‘‘ stationary state’’ continues to t ¼ 900 where the calculation

is terminated (Fig. 6(a)). Due to the variation of the CL time series within the range 200oto900; there is no guarantee
that this new ‘‘stationary state’’ would represent a true stationary state for CL: In order to explore this conjecture, the

calculations were carried out to t ¼ 1500: No further variation was observed and the CL signal was found to continue

its behavior as shown in Fig. 6(a) for t4800: The initial ‘‘stationary state’’ behavior could shed light on the wide

variations noted in the reported C0
L in the literature. It appears that the time of termination of the calculations has a

significant impact on the calculated C0
L: A more detailed analysis of this behavior will be carried out in the analysis of

the characteristics of the flow-induced forces in the next section. Furthermore, it will be shown that the reduction in

amplitude of the CL time series could be attributed to a vortex-shedding phase change. The amplitude of the CL time

series decreases continuously after t � 150 and the decrease continues to about t ¼ 400 (Fig. 6(b)) for the LBM result.

Thereafter, the CL time series reaches a ‘‘stationary state’’ and this continues to t ¼ 1500 without any more variation in

its amplitude, just like the result given by FVM.

Corresponding plots of the CD time series are shown in Fig. 7; the FVM result is plotted in Fig. 7(a) and the LBM

calculation in Fig. 7(b). The FVM calculated CD follows its CL counterpart closely with a seemingly ‘‘stationary state’’

in the range 300oto600 and another stationary state beyond t4800 (Fig. 7(a)). The LBM calculated CD; however,
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Fig. 4. Vorticity component oz distribution in the Y ¼ 0 plane at two different t: (a) t ¼ 600 in the quasi-stationary state, parallel

shedding; (b) t ¼ 900 in the stationary state, oblique shedding.
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behaves differently from its CL counterpart (Fig. 7(b)). A slight decrease followed by a slight increase behavior in the

range 150oto450 is discernible. Thereafter, the CD time series appears to reach a stationary state beyond t ¼ 450 and

the mean value seems to be fairly constant. Examining the data up to t ¼ 1500 fails to reveal a different behavior. This

raises a question concerning the true stationary behavior of the flow-induced forces. In view of this, CWT is used to

analyze the spectral characteristics of both the CL and CD time series.
4.4. Spectra of the flow-induced forces

The spectra of CL and CD calculated using the CWT technique are shown in Figs. 8–11. Time series data at Z ¼ 0

and �4 is chosen from the LBM results in the range 500oto610 where the CL signal appears to be stationary while the

corresponding CD time series might not be stationary. The CL and CD spectra at Z ¼ 0 and �4 are plotted in Figs. 8

and 9, respectively, with St ð¼ SteqÞ versus t. These figures represents a series of power spectra density of CL and CD

plotted on the t-axis. Therefore, at a fixed t, the plot becomes the power spectral density against St. This is why

the ordinate is St and the vortex shedding frequency Os can be easily determined from the plots. It is obvious that

the CL time series is stationary, because the power spectral density plot does not change with time. Variation with Z is
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Fig. 6. CL time series at Re ¼ 100 and a ¼ 16: (a) FVM; (b) LBM.
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illustrated by plotting the spectra at a particular t such as shown in Fig. 10. It can be seen that there is no

symmetry about Z ¼ 0 and clearly shows that CL varies along the span. The dominant frequency is Os and

this is recovered correctly from the CWT calculated spectra. From Fig. 8, it can be determined that St ð¼ SteqÞ ¼ 0:145:
Thus determined, St is the same as that deduced from a straightforward application of FFT to analyze the CL

time series.

The CD spectra are shown in Fig. 9 and they reveal variations with t and Z. These variations can be further illustrated

by comparing the spectra at different t and this is carried out in Fig. 11, where the spectra at Z ¼ 0 and �4 for two

different t are shown. Again, the spectra show that CD like CL varies along the span. In addition, the spectra of CD

evaluated at t ¼ 560 and 562 show differences for all three Z locations. This is evidence that true stationarity has not

been reached, at least not at t ¼ 562: The dominant frequency of the CD signal is 2Os and this is correctly recovered at

Z ¼ 0 and �4: Besides 2Os; higher harmonics, such as 3Os and 4Os; are also visible in the spectral plots. The spectral

plots in the Z ¼ �4 planes show a higher energy content than those at Z ¼ 0: This variation seems to indicate that, even
though the shedding frequency is stationary, the drag time series itself might not be stationary. From these spectral

plots, it could be inferred that the cross-talk between the lift and drag coefficient may not be very pronounced because

higher harmonics are not noticeable in the CL spectra. In spite of this, a one-degree-of-freedom model should not be

invoked in the analysis of a freely vibrating beam excited by flow-induced forces (Chilukuri, 1987). More will be said

about the lack of stationary behavior in CD in the statistical analysis of the CL and CD time series.
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Fig. 7. CD time series at Re ¼ 100 and a ¼ 16: (a) FVM; (b) LBM.

Fig. 8. Wavelet analysis of stationary CL time series calculated by LBM at (a) Z ¼ �4; (b) Z ¼ 0; and (c) Z ¼ 4: The curves denote the
power spectral energy of CL in the St–t map.
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4.5. Phase shift of the lift force along the span

Experiments have shown that, instantaneously, there are substantial variations in the phase of vortex shedding over a

spanwise distance (Roshko, 1954; Szepessy, 1994). In fact, the experimental studies of Roshko (1954) revealed that

periodic phase variation may exist parallel to the cylinder axis. Time series and the vorticity distribution may not show

the phase variation clearly; therefore, a CL contour over a t � Z domain could help to further understand the phase

change evolution of CL: The FVM calculated results at quasi-stationary, transition and stationary states are used to
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Fig. 9. Wavelet analysis of stationary CD time series calculated by LBM at (a) Z ¼ �4; (b) Z ¼ 0; and (c) Z ¼ 4: The curves denote
the power spectral energy of CD in the St–t map.
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construct the contours in the t � Z domain and are shown in Figs. 12(a)–(c), respectively. Similar results are obtained

using LBM-derived data. However, the two results only differ quantitatively in the calculated C0
L but not in the

trend shown in Fig. 12. The CL contours at t ¼ 300–350, which correspond to the quasi-stationary state, are displayed

in Fig. 12(a). These CL contours seems to be symmetric about the cylinder midspan. They show that, along the span, the

CL distribution is essentially flat in the central region, the vortex shedding frequency does not vary, and vortex shedding

is nearly in-phase even though a slight phase difference exists along the span. On close examination, it can be seen that
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the CL contours are not exactly stationary, because the CL cell is still changing with time. In the transition state,

t ¼ 630–730 as shown in Fig. 12(b), the CL contours are no longer symmetric about the cylinder midspan, and the

vortex shedding phase difference becomes larger and larger along the span with increasing time. Two CL cells are

formed behind the cylinder, but the shedding frequency is still the same along the span. As t increases to 800–850, the

CL contours become asymmetric about Z ¼ 0 as shown in Fig. 12(c), thus indicating an antiphase vortex shedding

along the span. As observed in Section 4.2, this out-of-phase vortex shedding could be a consequence of the

oblique shedding(Fig. 4(b)). Past results failed to observe this behavior because the calculations were seldom carried

out to t ¼ 900 and beyond. Another reason for the antiphase vortex shedding could be due to the existence of a valley in

the spanwise distribution of C0
L whose behavior is discussed in detail in Section 4.6. The CL contours are stationary

because there is no discernible change with time up to t ¼ 1500. Again, the shedding frequency appears to be the same

along the span (Fig. 5). This sequence of events shows that a phase transition has taken place in the approach to a

stationary state.
4.6. Force variation along cylinder span

In order to further pursue the behavior of the CL and CD time series, the variation of their mean and r.m.s. values

with Z and t are analyzed. To this end, two methods are used to calculate the statistics; one is the conventional method

of straightforwardly calculating the first and second moment of the time series over a long time period; another is to use

the running-time-average method (RTA) which is consistent with the spirit of CWT to determine the mean and r.m.s.

values. In the latter method, a slice of range 2T centered round an instantaneous time t is chosen for the determination

of the mean and r.m.s. values at t. This slice is then moved along the time axis to determine the variation of the mean

and r.m.s. values as a function of t. If the time series is indeed stationary, the mean and r.m.s. values thus determined

will remain constant with respect to t, provided 2T is much larger than the period of the stationary signal. All signals

used to determine the mean and r.m.s. values are taken from the time series at t4400 for LBM and at t4700 for FVM.

The time variations of C̄D and C0
D determined using RTA are shown with the results from FVM in Fig. 13 and the

corresponding LBM calculations in Fig. 14. In the process of deducing these values, the optimum 2T is found to be 60.

Consequently, the results reported in Figs. 13 and 14 specified 2T ¼ 60: In each panel, the time variations of C̄D and C0
D

for several Z locations are shown. There is no need to show the C0
L results because, in the previous section, the CL time

series has been demonstrated to be stationary irrespective of whether it is derived from the FVM or the LBM

simulations. From these plots, it can be seen that the FVM calculated C̄D and C0
D are stationary because there is

essentially no variations within the time period covered in Fig. 13. This is not quite true for the plots shown in Fig. 14

based on the LBM result. The time period covered is much longer in Fig. 14. Even though C̄D is stationary (Fig. 14(a)),

C0
D does not appear to be stationary because its value undergoes variation with t (Fig. 14(b)). The variation differs

depending on Z; it is greatest for Z ¼ 6 and least for Z ¼ 0 in the time period from 400 to � 600: Taking the period

from 700 to 900, the variation is essentially the same for all four Z locations and it is milder than in the earlier time
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Fig. 12. CL contours in t–Z plane: (a) quasi-stationary state; (b) transition state; (c) stationary state.
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period. Even then, C0
D shows a discernible variation with time. This C0

D dependence on t lends credence to the

conclusion that the LBM calculated CD signal is not quite stationary, even though the calculated C̄D has reached a

stationary state at t4400:
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Since the FVM calculated CD and CL are stationary, the straightforward time averaging method can be used to

calculate C̄D; C0
D; C̄L; and C0

L; these results are reported in Table 1 and plotted in Figs. 15 and 16. Even though the

LBM calculated CD has not yet approach a stationary state, an initial comparison is attempted by calculating C̄D; C0
D;

C̄L and C0
L using the straightforward time averaging method and the results are also listed in Table 1 and plotted in

Fig. 15. Two different sets of values are reported in Table 1; one lists the calculated values at the midspan of the

cylinder, another lists the average over the entire span L of the cylinder. The distributions of C̄L and C̄D; and C0
L and

C0
D along the cylinder span are shown in Figs. 15 and 16, respectively. In these figures, the time averaging distributions

and the RTA calculations at t ¼ 800 for the FVM and at t ¼ 450 for the LBM are also shown. If the time series is truly

stationary, both the time averaging values and the RTA calculations should agree with each other. The degree of

agreement is an indication of the stationary nature of the CD signal.

For a cylinder in a uniform cross-flow, C̄L should be identically zero. The magnitude of C̄L—an average of � 0:00045
for the FVM and � 0:00060 for the LBM—and its variation along Z is an indication of the calculation error of the

numerical techniques (Fig. 15(a)). These values are at least two to three orders of magnitude less than the calculated C0
L

(Fig. 16(a)) and three orders of magnitude less than C̄D: The time average values are not in agreement with the RTA

calculations; however, the maximum discrepancy is of the order of 0.0002 for the LBM and 0.0003 for the FVM. These

discrepancies are smaller than the calculation error of the two methods. Within the calculation error margin, the two

methods could be considered to replicate C̄L correctly, i.e., essentially zero C̄L along the span.

An inspection of Fig. 15(b) shows a significant variation of C̄D along the span. Overall, the FVM calculation is higher

than the LBM result, consistent with the 2-D calculations. The difference in the calculated C̄D is 23% in this 3-D case.
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In general, C̄D reaches a peak near the walls, and then displays a relatively flat distribution along the central L=2 span.
Due to 3-D wake effect, the distribution is not exactly symmetric about midspan. The C̄D data at midspan reported by

Mittal (2001) is also plotted in Fig. 15(b) for comparison; it is in good agreement with the LBM result. The average C̄D

at midspan and over the entire span L is given in Table 1. With the exception of the FVM result, the present LBM

calculated C̄D and other reported calculations of C̄D (Persillon and Braza, 1998; Zhang and Dalton, 1998) agree with

the value C̄D ¼ 1:32� 0:066 (Table 1). This includes the present 2-D calculations derived from the FVM and LBM

results and shows that C̄D in the midspan of a 3-D cylinder is essentially similar to its 2-D counterpart. In view of this, it

could be said that the LBM-calculated C̄D is more in line with other reported values. The variation of the calculated C̄D

in the central L=2 region is very small and suggests that C̄D measurements, which are normally derived from locations

in the central L=2 region, are not sensitive to Z. These results partly explain why C̄D measurements reported in the

literature have been quite consistent for both 2-D and 3-D cylinders. The stationary nature of the CD signal is

substantiated by the good agreement shown between the time-average values and the RTA calculations across the entire

span. This is true for both FVM and LBM calculations and lends credence to the claim that the discrepancies seen in the

C̄L plots are simply numerical calculation error.

The FVM and LBM calculated C0
L and C0

D along Z are plotted in Fig. 16 and the time average value over the entire

span and midspan value of C0
L and C0

D are tabulated in Table 1 for comparison with other calculated and measured C0
L



ARTICLE IN PRESS
R.M.C. So et al. / Journal of Fluids and Structures 20 (2005) 373–402 395
and C0
D:A 2-D calculation has also been carried out to facilitate comparison with 3-D results. Essentially, the calculated

C̄L is zero (Fig. 15(a)); the error margin along the span is at least two orders of magnitude smaller than the calculated

C0
L: This shows that either numerical method is suitable for this problem. The calculated C0

L�2D is within the range of

the published C0
L�2D (Table 1). However, the calculated C0

L�3D reported in Zhang and Dalton (1998) is much higher

than the present 3-D calculations; about 5–10 times larger. A possible reason could be the imposition of periodic

boundary conditions at the ends of the cylinder. A periodic boundary condition presumes a certain period for the wake

and induced-force behavior and that this behavior will repeat itself if the actual span of the cylinder is multiples of the

assumed period. This is tantamount to prescribing a behavior for the wake and induced force. As will be shown in

Section 4.8, where the effect of aspect ratio is investigated, an appropriate period could not be found in the range of a

examined, 6pap16: It is in this sense that the periodic boundary condition can be considered as one that limits the

development of the 3-D nature of the calculations. Consequently, the wall effect on the flow cannot be accounted for

properly.

Most measurements have been carried out in wind or water tunnels where the cylinder spanned the entire cross-

section on the test-section and the force was usually measured at midspan. In view of this, the present calculations could

be compared with most reported measurements at the same Re. Therefore, the present C0
L results could be considered to

be quite consistent with the measurements of Tanida et al. (1973). Note also the measurements of Khalak and

Williamson (1996) at Re ¼ 200–1300. Their measured C0
L vary from 0.03 to 0.30. The value at Re ¼ 200 is in line with

the present calculation and that of Mittal (2001). On the other hand, reported simulated C0
L results include C0

L�2D and

C0
L�3D and, as summarized in Norberg (2003), fall within the range 0.11–0.52, with most investigations reporting a

value around 0.24. The exception is the midspan value reported by Mittal (2001) for a 3-D calculation. This value,

C0
L�3D ¼ 0:033; is in line with the midspan values obtained by the present LBM and FVM calculations (Table 1). The

calculated spanwise average value is about twice as large as the midspan value (Table 1); even then, it is not close to the

lowest value summarized in Norberg (2003). Compared to the measurements of Tanida et al. (1973) and Khalak and

Williamson (1996) at Rep200; the C0
L�2D and C0

L�3D values reported in the literature are substantially higher, about

three to four times higher. This difference could be partially explained by examining Fig. 16(a). According to this plot,

measurement at the midspan is the lowest. However, simulated results obtained by assuming periodic boundary

condition might not be able to replicate this behavior.

The plots in Fig. 16(a) show significant variation of C0
L along Z and fair agreement between FVM and LBM results.

This is true, irrespective of whether the average is determined from time averaging or from the RTA method. In fact, the

agreement between the two sets of values is excellent, thus lending further support to the conclusion that the CL time

series is stationary. Comparing with the C̄D shown in Fig. 15(b), the difference between the FVM and LBM calculations

in terms of percentage is about the same. The C0
L distribution is almost symmetric about cylinder midspan. Near the

walls, C0
L is at its minimum because the wall boundary layer tends to suppress vortex shedding. Two peaks in C0

L exist

between the walls, thus indicating strong vortex shedding at these locations, which occur around Z ¼ �4 for the LBM

result. There is a shift to a smaller Z for the FVM result though. A similar shift also exists for the minimum C0
L location.

For LBM, the minimum occurs at midspan, but shifted to Z ¼ �0:4 for FVM. The C0
L calculation of Mittal (2001) is

also plotted in Fig. 16(a) for comparison. It agrees better with the FVM result. The experimental C0
L is very sensitive to

the location where it is measured, especially in the central region. A slight error in the determination of the location

could give rise to a rather significant error in the measured C0
L: For example, from the LBM calculation, C0

L at Z ¼ 0 is

0.043. If the Z location is moved to 0.8, C0
L becomes 0.054, thus resulting in an error of 26%. The error shown by the

FVM result is more than double this amount for about the same shift in Z. This could be the reason why there are so

much scatter reported in the measuredC0
L: This behavior contrasts with that of C̄D which is not sensitive to Z as long as

Z is located within the central L=2 span. There is also a substantial difference between the spanwise average C0
L and the

local C0
L; the discrepancy could be as large as 100%.

The C0
D distribution along Z is shown in Fig. 16(b). The FVM calculated C0

D is symmetric about Z ¼ 0; but the
LBM result is not. Since both calculations give rise to oblique vortex shedding in the stationary state, this lack of

symmetry for the LBM result could not be attributed to oblique vortex shedding. One possible reason could be

the nonstationary nature of the LBM-calculated CD signal. Again, there is a large variation of C0
D along the span

and the minimum value occurs at midspan. The percentage difference between the minimum and the maximum

value amounts to 300% for the FVM result and to more than 600% for the LBM result. This large variation

along the span could explain why there is so much scatter in the reported measurements of C0
D: The RTA calculations

from FVM results are in good agreement with the time-average values along the span. There are slight discrepancies

for the LBM results; however, the discrepancies are very small. Judging from the discrepancies alone, it will be

difficult to conclude that the LBM-calculated CD signal is nonstationary. With the help of Fig. 14(b), it is reasonable

to conclude that the LBM calculated CD signal is at best approaching stationary state but has not reached

stationarity yet.
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4.7. Force correlation coefficient

It has been known that vortex shedding from nominally 2-D bluff body exhibits certain 3-D characteristics. An

effective way of quantifying this three dimensionality is to calculate the spatial correlation along the span and the

associated phase angle f of the local fluctuating lift. In the present calculations, CL is a function of Z and t, i.e.,

CL ¼ CLðZ; tÞ: Therefore, spatial correlation and autocorrelation at a fixed spatial location can be examined. The cross-
correlation coefficient gij at delay time t between spanwise locations i and j is

gijðtÞ ¼
P

tf½CLðZi ; t þ tÞ�½CLðZj ; tÞ�gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t½CLðZi; t þ tÞ�2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t½CLðZj ; tÞ�

2
q . (30)

The coefficient gij between Z � 0 and another Z along the span at zero time delay ðt ¼ 0Þ is shown in Fig. 17. Here,

Z � 0 is selected at a location where the minimum C0
L occurs. The gij result deduced from LBM bears a striking

resemblance to that of the FVM. There is no correlated region, except for a very narrow region around Z � 0: The
cross-correlation between Z � 0 and Zo� 2 is very weak; however, the cross-correlation between Z � 0 and Z44 is

negative and gij � �0:8: In the central region, gij decreases from 1 to about zero on the �Z side and from 1 to �0:8 on
the positive Z side. The widely varied gij indicates that the 2-D assumption might not be correct at this a and Re.

Furthermore, gij is not symmetric about the midspan, indicating the inappropriateness of a symmetry assumption.

In order to quantify f; the autocorrelation gijðtÞ is calculated with time delay t in the range 0.01–15. The results for

both FVM and LBM are plotted in Fig. 18. Three gijðtÞ with i specified at Z ¼ �4 (this is the i location) and j selected at

three different Z are presented; g12ðtÞ represents the autocorrelation with j selected at Z ¼ 0:7; g13ðtÞ has j specified at

Z ¼ 4 and g14ðtÞ has j located Z ¼ 7:5: These three locations are chosen to cover about half of the cylinder span. An

inspection of this figure shows a strong periodic variation of gijðtÞ with t: It can be seen that the period of all three

autocorrelations is � 7:07 and the phase difference is 2p: The phase of these autocorrelations can be determined as

follows. Taking g12ðtÞ as an example, it is clear that the autocorrelation reaches a maximum ðg12ðtÞ � 1Þ at t ¼ 2:80;
therefore, the phase of g12ðtÞ is about 2:80� 2p=7:07 ¼ 0:79p:
A plot of f versus Z is shown in Fig. 19. In this plot, the reference location is again selected at Z � 0 where C0

L is a

minimum. Both LBM and FVM calculations are shown. These results reveal an almost identical phase for the lift along

the span. The phase angle of the lift force seems antisymmetric about the midspan. Furthermore, f varies significantly

in the region �2oZo5; and gives rise to a maximum variation of f � 1:3p: Beyond this region, f is nearly constant

within 5oZo8; and the value is about 0:8p: The phase f in the region �8oZo� 2 is only �0:44p; and is essentially

constant. Thus, vortex shedding is out of phase and antisymmetric in the two sides of the cylinder.

4.8. Aspect ratio effect

Most reported spatial correlations have been calculated from the measured fluctuating velocity behind the cylinder.

For a cylinder with smaller a, the wake could be 2-D (Norberg, 2003) and the spanwise fluctuating forces and velocities

could be highly correlated. In order to investigate the effect of a on the spatial correlation, gij calculated from CD and

CL are compared with those deduced from the wake velocities for different a. Several more calculations with the aspect

ratios selected as a ¼ 6; 8, 10, 12 and 14 have been carried out. The calculation for each case is made at Re ¼ 100 and is

carried out to a dimensionless time way after the phase of the lift force has switched. Only the section of data after the

lift has achieved stationary state is used to calculate the spatial correlations. A secondary objective of this set of

calculations is to examine whether an appropriate period exists for a long slender cylinder in order to assess the validity

or lack thereof of the assumption of a periodic boundary condition in the simulation of the flow and induced force on

such a cylinder.

In view of the fact that a large amount of velocity data is generated for each a, a decision has to be made to focus on

certain a values where the velocity data will be stored for later analysis. Judging from the behavior of the lift and drag

spatial correlations, it appears that the case where a ¼ 10; 12 and 14 should be examined in detail. Consequently, the

velocity data for these three cases is stored for later analysis. Four locations are selected to monitor the velocity time

series for all selected a; these points are located at A, B, C and D in the wake. Coordinates of the four points are defined

in Table 2. The CD and CL time series are chosen from Z ¼ �2: The correlation coefficients gij are then calculated from

these time series, and their behavior is used to ascertain the 3-D nature or lack thereof of the wake and flow-induced

forces. Other characteristics of the wake and flow-induced forces will not be examined in detail. In order to simplify the

notation for gij from this point on, gAB;L ð0; 0; 4Þ and gAB;D ð0; 0; 4Þ are used to denote gij between Z ¼ �2 for the lift and

drag force coefficient, respectively, and gij;u is used to denote gij for the u velocity between AB and CD, or gAB;u ð1:5; 0; 4Þ
and gCD;u ð1:5; 1:5; 4Þ; respectively. Similar notations are used for the location CD and for the v velocity.
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Variations of gij with a are shown in Fig. 20. For a ¼ 10; the values of gAB;L; gAB;D; gij;u and gij;v are essentially þ1:
The gij;u and gij;v determined from AB and CD are identical and equal to gAB;L and gAB;D; thus indicating a 2-D wake

behind the cylinder. At a ¼ 8; gAB;D is quite a bit lower than gAB;L: The reason could be attributed to the effect of either
end (boundary layer) on CD or to the less than stationary nature of the drag force. According to the studies of Berger

and Wille (1972), Slaouti and Gerrard (1981), Gerich and Eckelmann (1982), and Stager and Eckelmann (1991), end

plates have a significant effect on vortex shedding along the cylinder span. Therefore, it is not surprising that the flow-

induced forces will be affected near the cylinder ends (see Figs. 15 and 16 for the peaks in C̄D and C0
L near the ends of

the cylinder span). As a increases to 12, gAB;L is still highly correlated ðgAB;L � þ1Þ and coincides with gij;u and gij;v; but
gAB;D drops to nearly 0, thus indicating an increasing end effect on the flow-induced drag. At a ¼ 14; gAB;Lis nearly �1;
indicating an antiphase vortex shedding between Z ¼ �2: This suggests that the wake has become 3-D at a ¼ 14: Also,
the behavior of gCD;u; gCD;v and gAB;v are consistent with gAB;L; indicating an antiphase correlation between Z ¼ �2:
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Fig. 19. Phase of CL along cylinder span calculated using FVM and LBM.
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Fig. 20. Variation of gij as a function of a at Re ¼ 100:
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However, gAB;u is almost þ1; suggesting an in-phase variation of the stream component velocity u between Z ¼ �2:
Since points A and B are located at the Y ¼ 0 plane, which is the symmetry plane of vortex shedding from cylinder top

and bottom, it is most likely that A and B experience the same velocity variation with time. Consequently, the u velocity

at these locations is highly correlated. On the other hand, gAB;D is not as well correlated as gAB;L even though its

behavior is still determined by vortex shedding.

The results of gAB;L; gAB;D; gij;u and gij;v indicate that, at Re ¼ 100; the nature of the wake flow is influenced by a. At

a ¼ 10; the wake is essentially 2-D, while for a ¼ 14 the wake becomes 3-D. This behavior partially explains why 2-D

wake was reported in the literature for Re ¼ 100 because most a investigated was less than 16. For those simulations

where 12oao16; the assumption of symmetry plane and/or periodic boundary condition was usually invoked.

Consequently, the nature of the wake could not be properly investigated. In the present simulation, no such assumption
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Table 2

Coordinates of the locations A, B, C, and D for the spatial correlation gij

A B C D

X 1.5 1.5 1.5 1.5

Y 0 0 1.5 1.5

Z 2 �2 2 �2

gij gAB ð1:5; 0;�2Þ gCD ð1:5; 1:5;�2Þ

Z
-5 0 5

0

0.05

0.1

C
L'

Z

Fig. 21. Variation of C0
L along cylinder span for 6pap16 at Re ¼ 100:
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has been made concerning the wake flow. The wake is found to be 3-D for a ¼ 14 and it is this character that causes the

flow-induced forces to assume a 3-D behavior.

From Fig. 20, it can be seen that the flow-induced unsteady forces are also affected by a. In order to examine

this effect further, the C0
L distributions along the span of the cylinder for the different cases are deduced and plotted in

Fig. 21. There are six cases altogether. These six cases represent two different groups, with distinct behavior for each

group. For ap10; the C0
L distribution only shows one maximum and it is located at the midspan. As a increases to 12,

two maxima start to appear, one on either side of the midspan and the C0
L value at midspan reaches a minimum.

Further increasing a to 14 and 16 yields essentially the same behavior as that shown for a ¼ 12; but the lowest C0
L value

drops drastically. This lowest value does not seem to be affected much for aX14: As a increases beyond 12, the

locations of the maxima move toward the cylinder ends. The change from one type of behavior to the next is an

indication of the extent of the end wall effect on vortex shedding and hence on the flow-induced forces. It appears that,

for aX12; the effect is confined to a region near the end walls and has not penetrated into the central core of

the cylinder; hence, the existence of two peaks near the end walls. This C0
L distribution behavior does not support

the assumption of periodic boundary conditions in a 3-D simulation of the flow and induced force on the cylinder.

After all, within this range of a investigated, an appropriate period could not be identified for proper calculations to be

carried out.
5. Conclusions

A long slender cylinder with two end plates in a cross-flow has been numerically simulated using FVM and LBM. The

simulations were carried out for 6pap16 and at Re ¼ 100: These choices are based on the knowledge that, according
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to results reported in the literature, the wake at this Re is still 2-D and that the flow-induced forces are stationary. One

of the objectives is to investigate whether these two points are true for all a examined. The computational results lead to

the following conclusions:
(i)
 The FVM and LBM are used to simulate the 2-D case and the calculated C̄D and C0
L are consistent with those

reported in the literature. The difference between the FVM and LBM results is substantial and, in general, the

FVM values are higher.
(ii)
 At a ¼ 16; the wake is 3-D. Vortex shedding changes from a parallel behavior to an oblique behavior in

the time range, 600ptp900 (Fig. 4). Along the span, the lift contours become antiphase (Fig. 12). This phase shift

occurs after a complete transition from quasi-stationary to stationary has taken place and t4730: This oblique
vortex shedding behavior in the stationary state is partially responsible for the 3-D flow-induced forces acting on

the cylinder. As a result, the flow-induced forces vary substantially with Z and the cross-correlation of the lift

force and its phase indicate a strong 3-D vortex shedding phenomenon and wake flow behind the cylinder.
(iii)
 For the 3-D case, the lift and drag signals are not stationary for a nondimensional time to200: The signals

go through a transition period in the range 200oto500; where the signals appear to be stationary. This is

true for FVM results only. For LBM results, the lift and drag signals do not show such a transition period,

rather they continue to decrease with time until t � 500: Beyond t � 500; the signals decrease to another

stationary state for FVM results and to a stationary state for LBM results. The stationary state for both LBM

and FVM extends from t ¼ 500 to 1500. The peak-to-peak values of the force signals decrease substantially from

the first stationary state to the next for FVM. This variation partially explains why there are much scatter in the

reported C0
L and C0

D; and casts doubt on previously reported values determined from numerical simulations

terminated at tp500:

(iv)
 The previously reported C0

L values (determined at t ¼ 200–300) are close to that reported for the 2-D case. They

are 5–10 times larger than the experimentally measured values (Tanida et al., 1973; Khalak and Williamson,

1996). Determining C0
L from the lift signal in the range 200oto500 could contribute to a high calculated C0

L and

could partially explain the discrepancy between calculations and measurements.
(v)
 The lift and drag signals were found to be stationary for the FVM results; however, for the LBM results, even

though the lift signal was stationary, the drag signal was not quite stationary because the C0
D was found to vary

with time, albeit slightly, way after C̄D was found to be independent of time. Two different methods were used to

evaluate the time-mean values; a straightforward time-averaging method and the RTA method. In spite of this,

the straightforward time-averaging values of C̄D and C0
D are in good agreement with those deduced from RTA. In

this sense, the drag signal could also be considered approaching stationarity.
(vi)
 The two numerical methods (FVM and LBM) studied can replicate the trend of the calculations correctly;

however, their calculated results differ quantitatively. The LBM-calculated C̄D and C0
L are in agreement with

measurements, while the calculated C̄D is also in agreement with other calculations. Other calculations give a

value of C0
L that is substantially higher than the LBM result. This discrepancy could be partially explained by the

assumption of a periodic boundary condition in their calculations. On the other hand, the FVM-calculated C̄D is,

in general, higher than the measured value, but the calculated C0
L is consistent with that given by the LBM and

measurements.
(vii)
 Based on the range of a investigated, no clear pattern exists for the behavior of the spanwise C0
L distribution. The

results do show that the spanwise C0
L distribution is very much affected by a. For ap12; there is only one peak in

the spanwise C0
L distribution and this change to one with two peaks as a increases beyond 12. It is evident from

these results that no appropriate period can be found within the range of a examined. This implies that the

periodic boundary conditions are not suitable for the simulation of 3-D flow around and induced-force acting on

a cylinder in a cross-flow.
(viii)
 Present calculations do provide evidence to explain the wide scatter observed in the experimental measurements of

C0
L; at least in the range of Re and a investigated.
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